Mathematical functions and operators#
Mathematical operators#
| Operator | Description | 
|---|---|
| 
 | Addition | 
| 
 | Subtraction | 
| 
 | Multiplication | 
| 
 | Division (integer division performs truncation) | 
| 
 | Modulus (remainder) | 
Mathematical functions#
- abs(x) [same as input]#
- Returns the absolute value of - x.
- cbrt(x) double#
- Returns the cube root of - x.
- ceiling(x) [same as input]#
- Returns - xrounded up to the nearest integer.
- degrees(x) double#
- Converts angle - xin radians to degrees.
- e() double#
- Returns the constant Euler’s number. 
- exp(x) double#
- Returns Euler’s number raised to the power of - x.
- floor(x) [same as input]#
- Returns - xrounded down to the nearest integer.
- ln(x) double#
- Returns the natural logarithm of - x.
- log(b, x) double#
- Returns the base - blogarithm of- x.
- log2(x) double#
- Returns the base 2 logarithm of - x.
- log10(x) double#
- Returns the base 10 logarithm of - x.
- mod(n, m) [same as input]#
- Returns the modulus (remainder) of - ndivided by- m.
- pi() double#
- Returns the constant Pi. 
- power(x, p) double#
- Returns - xraised to the power of- p.
- radians(x) double#
- Converts angle - xin degrees to radians.
- round(x) [same as input]#
- Returns - xrounded to the nearest integer.
- round(x, d) [same as input]
- Returns - xrounded to- ddecimal places.
- sign(x) [same as input]#
- Returns the signum function of - x, that is:- 0 if the argument is 0, 
- 1 if the argument is greater than 0, 
- -1 if the argument is less than 0. 
 - For floating point arguments, the function additionally returns: - -0 if the argument is -0, 
- NaN if the argument is NaN, 
- 1 if the argument is +Infinity, 
- -1 if the argument is -Infinity. 
 
- sqrt(x) double#
- Returns the square root of - x.
- truncate(x) double#
- Returns - xrounded to integer by dropping digits after decimal point.
- width_bucket(x, bound1, bound2, n) bigint#
- Returns the bin number of - xin an equi-width histogram with the specified- bound1and- bound2bounds and- nnumber of buckets.
- width_bucket(x, bins) bigint
- Returns the bin number of - xaccording to the bins specified by the array- bins. The- binsparameter must be an array of doubles and is assumed to be in sorted ascending order.
Random functions#
- random() double#
- Returns a pseudo-random value in the range 0.0 <= x < 1.0. 
- random(n) [same as input]
- Returns a pseudo-random number between 0 and n (exclusive). 
- random(m, n) [same as input]
- Returns a pseudo-random number between m and n (exclusive). 
Trigonometric functions#
All trigonometric function arguments are expressed in radians.
See unit conversion functions degrees() and radians().
- acos(x) double#
- Returns the arc cosine of - x.
- asin(x) double#
- Returns the arc sine of - x.
- atan(x) double#
- Returns the arc tangent of - x.
- atan2(y, x) double#
- Returns the arc tangent of - y / x.
- cos(x) double#
- Returns the cosine of - x.
- cosh(x) double#
- Returns the hyperbolic cosine of - x.
- sin(x) double#
- Returns the sine of - x.
- sinh(x) double#
- Returns the hyperbolic sine of - x.
- tan(x) double#
- Returns the tangent of - x.
- tanh(x) double#
- Returns the hyperbolic tangent of - x.
Geometric functions#
- cosine_distance(array(double), array(double)) double#
- Calculates the cosine distance between two dense vectors: - SELECT cosine_distance(ARRAY[1.0, 2.0], ARRAY[3.0, 4.0]); -- 0.01613008990009257 
- cosine_similarity(array(double), array(double)) double#
- Calculates the cosine similarity of two dense vectors: - SELECT cosine_similarity(ARRAY[1.0, 2.0], ARRAY[3.0, 4.0]); -- 0.9838699100999074 
- cosine_similarity(x, y) double
- Calculates the cosine similarity of two sparse vectors: - SELECT cosine_similarity(MAP(ARRAY['a'], ARRAY[1.0]), MAP(ARRAY['a'], ARRAY[2.0])); -- 1.0 
Floating point functions#
- infinity() double#
- Returns the constant representing positive infinity. 
- is_finite(x) boolean#
- Determine if - xis finite.
- is_infinite(x) boolean#
- Determine if - xis infinite.
- is_nan(x) boolean#
- Determine if - xis not-a-number.
- nan() double#
- Returns the constant representing not-a-number. 
Base conversion functions#
- from_base(string, radix) bigint#
- Returns the value of - stringinterpreted as a base-- radixnumber.
- to_base(x, radix) varchar#
- Returns the base- - radixrepresentation of- x.
Statistical functions#
- t_pdf(x, df) double#
- Computes the Student’s t-distribution probability density function for given x and degrees of freedom (df). The x must be a real value and degrees of freedom must be an integer and positive value. 
- wilson_interval_lower(successes, trials, z) double#
- Returns the lower bound of the Wilson score interval of a Bernoulli trial process at a confidence specified by the z-score - z.
- wilson_interval_upper(successes, trials, z) double#
- Returns the upper bound of the Wilson score interval of a Bernoulli trial process at a confidence specified by the z-score - z.
Cumulative distribution functions#
- beta_cdf(a, b, v) double#
- Compute the Beta cdf with given a, b parameters: P(N < v; a, b). The a, b parameters must be positive real numbers and value v must be a real value. The value v must lie on the interval [0, 1]. 
- inverse_beta_cdf(a, b, p) double#
- Compute the inverse of the Beta cdf with given a, b parameters for the cumulative probability (p): P(N < n). The a, b parameters must be positive real values. The probability p must lie on the interval [0, 1]. 
- inverse_normal_cdf(mean, sd, p) double#
- Compute the inverse of the Normal cdf with given mean and standard deviation (sd) for the cumulative probability (p): P(N < n). The mean must be a real value and the standard deviation must be a real and positive value. The probability p must lie on the interval (0, 1). 
- normal_cdf(mean, sd, v) double#
- Compute the Normal cdf with given mean and standard deviation (sd): P(N < v; mean, sd). The mean and value v must be real values and the standard deviation must be a real and positive value. 
- t_cdf(x, df) double#
- Compute the Student’s t-distribution cumulative density function for given x and degrees of freedom (df). The x must be a real value and degrees of freedom must be an integer and positive value.